
The region R is represented by the improper integral 

This is a improper integral because the upper limit of the integral 
is positive infinity.  
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The aim of this chapter is to extend upon the calculus you learnt in Pure Year 2. We will look at improper integrals, the 
differentiation and integration of inverse trigonometric functions and the use of partial fractions to integrate fractional 
expressions with quadratic factors in the denominator. Proficiency with the differentiation and integration techniques 
you covered in Pure Year 2 will be key in this chapter. 

Defining improper integrals 
You need to know what is meant by an improper integral, and when they can be evaluated.  

 The integral                            is improper if: 

o one or both limits are infinite. 
o 𝑓𝑓(𝑥𝑥) is undefined at some point in the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏. 

If an improper integral exists, we say it is convergent. Otherwise we say it is divergent. 

 

 
 

Integrals where one of the limits is infinite 
When evaluating integrals with infinity in one of the limits, we use a process involving limits:  

1. Replace the infinity with another variable (e.g. 𝑡𝑡)
2. Evaluate the integral as usual. 
3. Consider the limit of your result as 𝑡𝑡 → ±∞ (this will depend on whether the range of integration included

positive or negative infinity).  

The limit of the result will give you the final answer. It is important to note that this limit will not always exist. In such 
cases, the integral is said to be divergent and cannot be evaluated. If the limit does exist however, the integral is 
convergent and we can evaluate it. 

Example 1: Evaluate the integral                  , or show that it is not convergent. 

Integrals where both limits are infinite 
If both limits are infinite, then you need to split the integral up into the sum of two improper integrals as follows: 

 . 

You can choose any value of 𝑘𝑘 when splitting up such an integral. Remember that if both integrals converge then the 
original will converge. If one diverges however, then the original will diverge. 

Integrals that are undefined at some point 
When dealing with integrals where the integrand is undefined at some point in the given interval, we use a very similar 
limiting process. If the undefined point is one of your limits of integration:  

1. Identify which point, 𝑘𝑘, in the interval is undefined and replace this with another variable, 𝑡𝑡.
2. Evaluate the integral as usual. 
3. Consider the limit of your result as 𝑡𝑡 → 𝑘𝑘. This will be your final answer.

In the rare occasion that the undefined point is not one of your limits, you will need to split the integral up before using 
the above process: 

 If 𝑓𝑓(𝑥𝑥) is undefined at 𝑥𝑥 = 𝑘𝑘 over the interval [𝑎𝑎, 𝑏𝑏], then  

Example 2: Evaluate the integral                 , or show that it is not convergent.  

The mean value of a function 
You already know that to calculate the mean of a set of values, you must sum up the values and divide by the number of 
values. We will now extend this idea to look at how we find the mean value of a function over a given interval. 

 The mean value, 𝑓𝑓,̅ of a function 𝑓𝑓(𝑥𝑥) over the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 is given by 

You can use the following rules to deduce the mean value of some transformed functions: 

If the function 𝑓𝑓(𝑥𝑥) has mean value 𝑓𝑓 ̅over the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, then: 

 𝑓𝑓(𝑥𝑥) + 𝑘𝑘 has mean value 𝑓𝑓̅ + 𝑘𝑘 over the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 

 𝑘𝑘𝑓𝑓(𝑥𝑥) has mean value 𝑘𝑘𝑓𝑓 ̅over the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 

 −𝑓𝑓(𝑥𝑥) has mean value -𝑓𝑓 ̅ over the interval 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, 

where 𝑘𝑘 is a real constant. 

Example 3: Find the exact mean value of 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠+4

 over the interval �0, 𝜋𝜋
2
�. 

Differentiating inverse trigonometric functions 
You need to be able to differentiate expressions involving the inverse trigonometric functions. The following results are 
useful, and you could be asked to prove them: 

 . 
 

 . 
 

 . 

It is important to note that you cannot use these results to directly differentiate transformations of the inverse 
functions. For example, you cannot conclude that 𝑑𝑑

𝑑𝑑𝑠𝑠
(arcsin 2𝑥𝑥) = 1

�1−(2𝑠𝑠)2
. If you wish to differentiate such 

expressions, you must use either implicit differentiation or the chain rule. You should use whichever method you prefer. 
Here is an example showing both methods in action: 

Example 4: Given that 𝑦𝑦 = arctan(𝑥𝑥2), find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

 using: (i) implicit differentiation (ii) the chain rule. 
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Using the mean value formula:  𝑓𝑓̅ =
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Rewriting the numerator using the identity 
sin 2𝑥𝑥 = 2 sin 𝑥𝑥 cos 𝑥𝑥 
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Using the reverse chain rule to integrate, 
then evaluating our result using the given 
limits: 
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The region R is represented by the improper integral 

This is an improper integral because the range of integration [0,2] 
contains the point 𝑥𝑥 = 0, where the curve is undefined since 
𝑥𝑥 = 0 is an asymptote.  

Integrating with inverse trigonometric functions 
You also need to know and be able to prove the following results: 

  

  

These results are given to you in the formula booklet, and you are allowed to use them without proof unless of course 
you are explicitly asked to prove them. The following example contains the proof for results (I) and (II). 

Example 5:  Show that:      (i)    (ii)      

In general, the procedure to integrate functions which are similar to (I) and (II) is to manipulate the expression to match 
one of the forms (I) or (II), then use their results to evaluate the integral. However, you may need to use a substitution if 
you can’t manipulate into one of these forms. The following tips are helpful for such cases: 

 For integrals involving 𝑎𝑎2 + 𝑥𝑥2, try the substitution 𝑥𝑥 = 𝑎𝑎 tan𝑢𝑢.

 For integrals involving √𝑎𝑎2 − 𝑥𝑥2, try the substitution 𝑥𝑥 = 𝑎𝑎 sin𝑢𝑢.

Integrating using partial fractions with non-linear factors 
Previously in Pure Year 2, you learnt how to use partial fractions to integrate fractions where one or more linear factors 
were present in the denominator. You also need to know how to use partial fractions to integrate expressions where 
there are one or more quadratic factors of the form 𝑎𝑎𝑥𝑥2 + 𝑏𝑏 in the denominator. The partial fractions method does not 
change but we have to make a small modification to the first step of the process: 

 When using partial fractions with a quadratic factor in the denominator, you must ensure the numerator of
the quadratic fraction is in a linear form (i.e. 𝑎𝑎𝑥𝑥 + 𝑏𝑏). 

Here are three examples outlining how we begin the partial fractions procedure with quadratic factors: 

Example 6:  Find 𝐼𝐼 = ∫ 2

(𝑥𝑥2+1)(𝑥𝑥+1)
𝑑𝑑𝑥𝑥 . 

(i) Taking 𝑡𝑡𝑎𝑎𝑡𝑡 of both sides: 𝑦𝑦 = arctan(𝑥𝑥2) ⇒ tan 𝑦𝑦 = 𝑥𝑥2 

Differentiating both sides with respect to 𝑥𝑥 (implicitly): sec2𝑦𝑦
𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 2𝑥𝑥 

Making 𝑑𝑑𝑑𝑑
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We want 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

 in terms of 𝑥𝑥 only, so we need to find a way to write 
𝑠𝑠𝑠𝑠𝑠𝑠2𝑦𝑦 in terms of 𝑥𝑥. Using the identity 1 + 𝑡𝑡𝑎𝑎𝑡𝑡2𝑦𝑦 ≡ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑦𝑦: 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥
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1 + tan2𝑦𝑦

Since 𝑡𝑡𝑎𝑎𝑡𝑡𝑦𝑦 = 𝑥𝑥2,   𝑡𝑡𝑎𝑎𝑡𝑡2𝑦𝑦 = 𝑥𝑥4.  𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

=
2𝑥𝑥

1 + 𝑥𝑥4

(ii) We start by replacing the input with another variable 𝑡𝑡: Let 𝑡𝑡 = 𝑥𝑥2,  then 𝑦𝑦 = arctan 𝑡𝑡 

Differentiating with respect to 𝑡𝑡. We use the result 
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We use the chain rule to figure out what else we need to find 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

 .  𝑑𝑑𝑦𝑦
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Since we let 𝑡𝑡 = 𝑥𝑥2 at the beginning, we use this to find 𝑑𝑑𝑡𝑡
𝑑𝑑𝑠𝑠

. 𝑡𝑡 = 𝑥𝑥2 ⇒  
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Using 𝑡𝑡 = 𝑥𝑥2 to express 𝑑𝑑𝑑𝑑
𝑑𝑑𝑠𝑠

 solely in terms of 𝑥𝑥: 
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To prove this result, you need to first rewrite the integral as 

∫ 1
(𝑎𝑎+𝑠𝑠)(𝑎𝑎−𝑠𝑠)

𝑑𝑑𝑥𝑥, then use partial fractions to integrate the expression in the 

same way you learnt to do in Pure Year 2 (Chapter 11). 

(I) 
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(II) 

(III) 

To prove these results, you should use implicit 
differentiation. Follow the same technique 
used in part (i) of example 4. 

1
𝑏𝑏 − 𝑎𝑎

� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 .
𝑏𝑏

𝑎𝑎

𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 could also be written as [𝑎𝑎, 𝑏𝑏] 
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(i) 

Using the substitution 
𝑥𝑥 = 𝑎𝑎 tan𝑢𝑢: 

𝑥𝑥 = 𝑎𝑎 tan𝑢𝑢 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑢𝑢

= 𝑎𝑎sec2𝑢𝑢 ⇒ 𝑑𝑑𝑥𝑥 = 𝑎𝑎sec2𝑢𝑢 𝑑𝑑𝑢𝑢 

Our integral becomes: 

�
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𝑎𝑎2 + 𝑎𝑎2tan2𝑢𝑢
𝑎𝑎𝑠𝑠ec2𝑢𝑢 𝑑𝑑𝑢𝑢 
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𝑎𝑎sec2𝑢𝑢 𝑑𝑑𝑢𝑢 

Simplifying using 
1 + 𝑡𝑡𝑎𝑎𝑡𝑡2𝑢𝑢 ≡ 𝑠𝑠𝑠𝑠𝑠𝑠2𝑢𝑢 = �
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Carrying out the 
integration: =

𝑢𝑢
𝑎𝑎

+ 𝑠𝑠 

Finding 𝑢𝑢 in terms of 𝑥𝑥 
so we can write our 
result in terms of 𝑥𝑥: 

Since 𝑥𝑥 = 𝑎𝑎 tan𝑢𝑢, 
𝑥𝑥
𝑎𝑎

= tan𝑢𝑢 

∴ 𝑢𝑢 = arctan �
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So our result is: 
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(ii) 

Using the substitution 
𝑥𝑥 = 𝑎𝑎𝑠𝑠𝑎𝑎𝑡𝑡𝑢𝑢: 

𝑥𝑥 = 𝑎𝑎 sin 𝑢𝑢 
𝑑𝑑𝑥𝑥
𝑑𝑑𝑢𝑢

= 𝑎𝑎 cos𝑢𝑢 ⇒ 𝑑𝑑𝑥𝑥 = 𝑎𝑎 cos𝑢𝑢  𝑑𝑑𝑢𝑢 

Our integral becomes: 

�
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𝑎𝑎 cos𝑢𝑢  𝑑𝑑𝑢𝑢 
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�𝑎𝑎2(1 − sin2𝑢𝑢)
𝑎𝑎 cos𝑢𝑢  𝑑𝑑𝑢𝑢 

Simplifying: = �
1

𝑎𝑎 cos𝑢𝑢
𝑎𝑎 cos𝑢𝑢  𝑑𝑑𝑢𝑢 = �1𝑑𝑑𝑢𝑢 

Carrying out the 
integration: = 𝑢𝑢 + 𝑠𝑠 

Finding 𝑢𝑢 in terms of 
𝑥𝑥 so we can write our 
result in terms of 𝑥𝑥: 

Since 𝑥𝑥 = 𝑎𝑎 sin 𝑢𝑢, 
𝑥𝑥
𝑎𝑎

= sin 𝑢𝑢 

∴ 𝑢𝑢 = arcsin �
𝑥𝑥
𝑎𝑎
� 

So our result is: arcsin �
𝑥𝑥
𝑎𝑎
� + 𝑠𝑠 

� 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 = � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥
𝑘𝑘

𝑎𝑎

𝑏𝑏

𝑎𝑎
+ � 𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥

𝑏𝑏

𝑘𝑘
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(𝑥𝑥2 + 1)(𝑥𝑥 + 3)

≡
𝐴𝐴𝑥𝑥 + 𝐵𝐵

(𝑥𝑥2 + 1) +
𝐶𝐶

(𝑥𝑥 + 3)

Setting up the partial fractions, making the denominators the same 
and equating the numerators: 

2
(𝑥𝑥2 + 1)(𝑥𝑥 + 1)

≡
𝐴𝐴𝑥𝑥 + 𝐵𝐵

(𝑥𝑥2 + 1) +
𝐶𝐶

(𝑥𝑥 + 1)

⇒ 2 ≡ (𝐴𝐴𝑥𝑥 + 𝐵𝐵)(𝑥𝑥 + 1) + 𝐶𝐶(𝑥𝑥2 + 1)

To find 𝐴𝐴,𝐵𝐵,𝐶𝐶 we can compare coefficients: 
We could also use the substitution method to find 𝐴𝐴,𝐵𝐵,𝐶𝐶. 

2 = 𝐵𝐵 + 𝐶𝐶     (comparing constants) 
𝐴𝐴 + 𝐵𝐵 = 0    (comparing 𝑥𝑥 coefficients) 
𝐴𝐴 + 𝐶𝐶 = 0      (comparing 𝑥𝑥2 coefficients) 
⇒ 𝐴𝐴 = −1,𝐵𝐵 = 1,𝐶𝐶 = 1

Our integral becomes: �
−𝑥𝑥 + 1

(𝑥𝑥2 + 1) +
1

(𝑥𝑥 + 1)
 𝑑𝑑𝑥𝑥 

To integrate the first expression, we split the fraction into two, and 
use the reverse chain rule to integrate the first fraction and the result 
(I) for the second.

�
−𝑥𝑥 + 1

(𝑥𝑥2 + 1)  𝑑𝑑𝑥𝑥 = �
−𝑥𝑥

(𝑥𝑥2 + 1) +
1

(𝑥𝑥2 + 1)  𝑑𝑑𝑥𝑥 

= −
1
2

ln(𝑥𝑥2 + 1) + arctan 𝑥𝑥 + c 

To integrate the second expression, we use a result from Pure Year 2. �
1

(𝑥𝑥 + 1)
 𝑑𝑑𝑥𝑥 = ln|𝑥𝑥 + 1| + c 

Putting our answers together: ∴ 𝐼𝐼 = −
1
2

ln(𝑥𝑥2 + 1) + ln|x + 1| + arctan 𝑥𝑥 + c 

Simplifying use log rules: = ln �
𝑥𝑥 + 1
√𝑥𝑥2 + 1

� + arctan𝑥𝑥 + 𝑠𝑠 

�
1

𝑎𝑎2 − 𝑥𝑥2
𝑑𝑑𝑥𝑥 =

1
2𝑎𝑎

ln �
𝑎𝑎 + 𝑥𝑥
𝑎𝑎 − 𝑥𝑥

� + 𝑠𝑠 

 One quadratic factor 
𝑥𝑥3 + 9𝑥𝑥2 + 𝑥𝑥 − 1

𝑥𝑥4 − 1
≡

𝐴𝐴𝑥𝑥 + 𝐵𝐵
(𝑥𝑥2 + 1) +

𝐶𝐶𝑥𝑥 + 𝐷𝐷
(𝑥𝑥2 − 1) 

 Multiple quadratic factors 
𝑥𝑥4 + 1

𝑥𝑥(𝑥𝑥2 + 1)2 ≡
𝐴𝐴
𝑥𝑥

+
𝐵𝐵𝑥𝑥 + 𝐶𝐶

(𝑥𝑥2 + 1) +
𝐷𝐷𝑥𝑥 + 𝐸𝐸

(𝑥𝑥2 + 1)2 

 

 Repeated quadratic factor 



https://bit.ly/pmt-edu
https://bit.ly/pmt-cc 
https://bit.ly/pmt-cc


