Methods in Calculus Cheat Sheet

The aim of this chapter is to extend upon the calculus you learnt in Pure Year 2 . We will look at improper integrals, the expressions with quadratic factors in the denominator. Proficiency with the differentiation and integration techniques you covered in Pure Year 2 will be key in this chapter.
Defining improper integrals
You need to know what is meant by an improper integral, and when they can be evaluated.
The integral $\int_{a}^{b} f(x) d x$ is improper if:
$a \leq x \leq b$ could also be written as $[a, b]$

\circ
$\circ \quad$ one or both limits are infinite.
\circ

f an improper integral exists, we say it is convergent. Otherwise we say it is divergent.

The region R is represented by the improper integral $\int_{2}^{\infty} \frac{1}{x^{2}} d x$
This s sa improper in
is ositive infinity.

Integrals where one of the limits is infinite
.

1. Replace the infinity with another variable (e.g

Evaluate the integral as usual.
Consider the limit of your res
The limit of the result will give you the final answer. It is important to note that this limit will not always exist. In such cases, the integral is said to be divergent and cannot be evaluated. If the limit does exist however, the integral is convergent and we can evaluate
Example 1: Evaluate the integral $\int_{2}^{\infty} \frac{1}{x^{2}} d x$, or show that it is not convergent.

Replacing the infinity with t	$\int_{2}^{t} \frac{1}{x^{2}} d x$
Carrying out the integration:	$\left[-\frac{1}{x}\right]_{2}^{t}=\left[-\frac{1}{t}+\frac{1}{2}\right]$
Finding the limit of our result as $t \rightarrow \infty$ Note that as $t \rightarrow \infty,-\frac{1}{t} \rightarrow 0$.	$\lim _{t \rightarrow \infty}\left[-\frac{1}{t}+\frac{1}{2}\right]=\frac{1}{2}$

Integrals where both limits are infinite
If both limits are infinite, then you need to split the integral up into the sum of two improper integrals as follows:

- $\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{k} f(x) d x+\int_{k}^{\infty} f(x) d x$

You can choose any value of k when splitting up such an integral. Remember that if both integrals converge then the original will converge. If one diverges however, then the original will diverge.
Integrals that are undefined at some point
When deaing with integrals where the integrand is undefined at some po
limiting process If the undefined

1. Identify which point, k, in the interval is undefined and replace this with another variable, ,
2. Evaluate the integral as usual.
3. Evaluate the integral as usual. Consider the limit of your result as $t \rightarrow k$. This will be your final answer

In the rare occasion that the undefined point is not one of your limits, you will need to split the integral up before using the above process:

If $f(x)$ is undefined at $x=k$ over the interval $[a, b]$, then $\int_{a}^{b} f(x) d x=\int_{a}^{k} f(x) d x+\int_{k}^{b} f(x) d x$ Example 2: Evaluate the integral $\int_{0}^{2} \frac{1}{\sqrt{x}} d x$, or show that it is not convergent.

Notice that the function is undefined at $x=0$, so we replace 0 with t and integrate. $\int_{t}^{2} \frac{1}{\sqrt{x}} d x=[2 \sqrt{x}]_{t}^{2}=[2 \sqrt{2}-2 \sqrt{t}]$
Finding the linit of our result as $t \rightarrow 0$. Note that as $t \rightarrow 0,2 \sqrt{t} \rightarrow 0$.
$\int_{t} \lim _{t \rightarrow 0}[2 \sqrt{2}-2 \sqrt{t}]=2 \sqrt{2}+0=2 \sqrt{2}$

The mean value of a function
You already know that to calcula
You already know that to calculate the mean of a set of values, you must sum up the values and divide by the number of values. We will now extend this idea to look a how we find the mean value of a function over given interv

The mean value, \bar{f}, of a function $f(x)$ over the interval $a \leq x \leq b$ is given by $\frac{1}{b-a} \int_{a}^{b} f(x) d x$ You can use the following rules to deduce the mean value of some transformed functions:

If the function $f(x)$ has mean value \bar{f} over the interval $a \leq x \leq b$, then
$f(x)+k$ has mean value $\bar{f}+k$ over the interval $a \leq x \leq b$
$k f(x)$ has mean value $k \bar{f}$ over the interval $a \leq x \leq b$,
$-f(x)$ has mean value $-\bar{f}$ over the interval $a \leq x \leq b$,
where k is a real constant.
Example 3: Find the exact mean value of $f(x)=\frac{\sin \operatorname{coscosx}}{\cos 2 x+4}$ over the interval $\left[0, \frac{\pi}{2}\right]$.

Using the mean value formula:	$\bar{f}=\frac{1}{\frac{\pi}{2}-0} \int_{0}^{\frac{\pi}{2}} \sin x \cos x d x$
Rewriting the numerator using the identity $\sin 2 x=2 \sin x \cos x$	$\frac{1}{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2 x \cdot 4 x$
Simplifing:	$=\frac{1}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\sin 2 x}{\cos 2 x+4} d x$
Using the reverse chain rule to integrate, then evaluating our result using the given limits:	$\begin{aligned} & =\frac{1}{\pi}\left[-\frac{1}{2} \ln \|\cos 2 x+4\|\right]_{0}^{\frac{\pi}{2}}=\frac{1}{\pi}\left[-\frac{1}{2} \ln \|3\|+\frac{1}{2} \ln \|5\|\right] \\ & =\frac{1}{2 \pi} \ln \left\|\frac{5}{3}\right\| \end{aligned}$

Differentiating inverse trigonometric function You need to be able to differentiate expression
useful, and you could be asked to prove them:

$$
\begin{aligned}
& \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x}(\arccos x)=-\frac{1}{\sqrt{1-x^{2}}} \\
& \begin{array}{l}
\text { To prove these results, you should use implich } \\
\text { differentiation. Follow the same techniique }
\end{array} \\
& \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
& \text { differentiation. Follow the }
\end{aligned}
$$

It is important to note that you cannot use these results to directly differentiate transformations of the inverse functions. For example, you cannot conclude that $\frac{d}{d x}(\arcsin 2 x)=\frac{1}{\sqrt{1-(-2 x)}}$. If you wish to differentiate such
expressions, you must use either implicit differentiation or the chain rule. . ou should use whichever method you prefer. Here is an example showing both methods in action:
Example 4: Given that $y=\arctan \left(x^{2}\right)$, find $\frac{d y}{d x}$ using: (i) implicit differentiation (ii) the chain rule.

(i) Taking tan of both sides:	$y=\arctan \left(x^{2}\right) \Rightarrow \tan y=x^{2}$
Differentiating both sides with respect to x (implicitly):	$\sec ^{2} y \frac{d y}{d x}=2 x$
Making $\frac{d y}{d x}$ the subject:	$\frac{d y}{d x}=\frac{2 x}{\sec ^{2} y}$
We want $\frac{d y}{d x}$ in terms of x only, so we need to find a way to write $\sec ^{2} y$ in terms of x. Using the identity $1+\tan ^{2} y \equiv \sec ^{2} y$:	$\frac{d y}{d x}=\frac{2 x}{1+\tan ^{2} y}$
Since tany $=x^{2}, \tan ^{2} y=x^{4}$.	$\frac{d y}{d x}=\frac{2 x}{1+x^{4}}$
(ii) We start by replacing the input with another variable t :	Let $t=x^{2}$, then $y=\arctan t$
Differentiating with respect to t. We use the result $\frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}}$	$\frac{d y}{d t}=\frac{1}{1+t^{2}}$
We use the chair rue tof figure out whate else we need to find $\frac{d y}{d x}$.	$\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}$
Since we let $t=x^{2}$ at the beginning, we use this to find dit $\frac{d t}{d x}$.	$t=x^{2} \Rightarrow \frac{d t}{d x}=2 x: \frac{d y}{d x}=\frac{2 x}{1+t^{2}}$
Using $t=x^{2}$ to express $\frac{d y}{d x}$ solely in terms of x :	$\frac{d y}{d x}=\frac{2 x}{1+\left(x^{2}\right)^{2}}=\frac{2 x}{1+x^{4}}$

Integrating with inverse trigonometric functions
Integrating with inverse trigonometric functions
You also need to know and be able to prove the following results:

- $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c \quad$ (I)
$\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+c$
(III)
- $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+c$
(II) To prove this reat

These results are given to you in the formula booklet, and you are allowed to use them without proof unless of course you are explicitly asked to prove them. The following example contains the proof for results (I) and (II).
Example 5: Show that: (i) $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)$
(ii) $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+$

(i)		(ii)	
Using the substitution $x=a \tan u$:	$\begin{aligned} & x=a \tan u \\ & \frac{d x}{d u}=a \sec ^{2} u \Rightarrow d x=a \sec ^{2} u d u \end{aligned}$	Using the substitution $x=a \sin u:$	$\begin{aligned} & x=a \sin u \\ & \frac{d x}{d u}=a \cos u \Rightarrow d x=a \cos u d u \end{aligned}$
Our integral becomes:	$\begin{aligned} & \int \frac{1}{a^{2}+a^{2} \tan ^{2} u} a \sec ^{2} u d u \\ & =\int \frac{1}{a^{2}\left(1+\tan ^{2} u\right)} a \sec ^{2} u d u \end{aligned}$	Our integral becomes:	$\begin{aligned} & \int \frac{1}{\sqrt{a^{2}-a^{2} \sin ^{2} u}} a \cos u d u \\ & =\int \frac{1}{\left.\sqrt{a^{2}\left(1-\sin ^{2} u\right.}\right)} a \cos u d u \end{aligned}$
Simplifying using $1+\tan ^{2} u \equiv \sec ^{2} u$	$=\int \frac{1}{a^{2} \sec ^{2} u} a \sec ^{2} u d u=\int \frac{1}{a} d u$	Simplifing:	$=\int \frac{1}{a \cos u} a \cos u d u=\int 1 d u$
Carrying out the integration	$=\frac{u}{a}+c$	Carrying out the integration:	$=u+c$
Finding u in terms of so we can write our result in terms of x	$\begin{aligned} & \text { Since } x=a \tan u, \\ & \frac{x}{a}=\tan u \\ & \therefore u=\arctan \left(\frac{x}{a}\right) \end{aligned}$	Finding u in terms of x so we can write ou result in terms of x :	$\begin{aligned} & \operatorname{since} x=a \sin u, \\ & \frac{x}{a}=\sin u \\ & \therefore u=\arcsin \left(\frac{x}{a}\right) \end{aligned}$
So our result is:	$\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c$	So our result is:	$\arcsin \left(\frac{x}{a}\right)+c$

In general, the procedure to integrate functions which are similar to (I) and (II) is to manipulate the expression to match one of the forms (I) or (II), then use their results to evaluate the integral. However, you may need to use a substitution it you can't manipulate into one of these forms. The following tips are helpful for such cases

$$
\text { For integrals involving } a^{2}+x^{2} \text {, try the substitution } x=a \tan u \text {. }
$$

$$
\text { For integrals involving } \sqrt{a^{2}-x^{2}} \text {, try the substitution } x=a \sin u \text {. }
$$

Integrating using partial fractions with non-linear factors
Previously in Pure Year 2, you learnt how to use partial fractions to integrate fractions where one or more linear factors were present in the denominator. You also need to know how to use partial fractions to integrate expressions where there are one or more quadratic factors of the form $a x^{2}+b$ in the denominato
change but we have to make a small modification to the first step of the process:

When using partial fractions with a quadratic factor in
the quadratic fraction is in a linear form (i.e. $a x+b$).
Here are three examples outining how we begin the partial fractions procedure with quadratic factors:

Example 6: Find $I=\int \frac{2}{\left(x^{2}+1\right)(x+1)} d x$.

Setting up the partial fractions, and equating the unmerators:

To find A, B, C we can compore coefficients:
We could also wse the sumbstitution method to

Our integral becomes:

To integrate the first expression, we split the fraction into two, and use the reverse cha
(I) for the second.
To integrate the second expression, we use a result from Pur Year
Putting our answers together:
Simplifying use log rules:

